Nicotinamide Mononucleotide (NMN) has gained attention in the bodybuilding community for its potential benefits in enhancing physical performance and recovery. NMN is a precursor to Nicotinamide Adenine Dinucleotide (NAD+), a vital coenzyme involved in cellular energy production and metabolism. By boosting NAD+ levels, NMN may improve muscle endurance, reduce fatigue, and promote more efficient recovery after intense workouts.
Research into NMN’s impact on bodybuilding is still emerging, but some studies suggest it could help mitigate age-related declines in muscle function and strength. As we age, NAD+ levels naturally decrease, which can contribute to decreased muscle mass and performance. Supplementing with NMN might counteract these effects, helping bodybuilders maintain their muscle mass and strength over time.
-
Bieganowski P, Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell. 2004 May 14;117(4):495-502. doi: 10.1016/s0092-8674(04)00416-7. PMID: 15137942.
-
Yang, N. C., Cho, Y. H., & Lee, I. (2019). The Lifespan Extension Ability of Nicotinic Acid Depends on Whether the Intracellular NAD+ Level Is Lower than the Sirtuin-Saturating Concentrations. International journal of molecular sciences, 21(1), 142. https://doi.org/10.3390/ijms21010142.
-
Hashimoto, T., Horikawa, M., Nomura, T., & Sakamoto, K. (2010). Nicotinamide adenine dinucleotide extends the lifespan of Caenorhabditis elegans mediated by sir-2.1 and daf-16. Biogerontology, 11(1), 31–43. https://doi.org/10.1007/s10522-009-9225-3.
-
Rajman, L., Chwalek, K., & Sinclair, D. A. (2018). Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence. Cell metabolism, 27(3), 529–547. https://doi.org/10.1016/j.cmet.2018.02.011.
-
Yaku, K., Okabe, K., & Nakagawa, T. (2018). NAD metabolism: Implications in aging and longevity. Ageing research reviews, 47, 1–17. https://doi.org/10.1016/j.arr.2018.05.006.
-
Palacios, J. A., Herranz, D., De Bonis, M. L., Velasco, S., Serrano, M., & Blasco, M. A. (2010). SIRT1 contributes to telomere maintenance and augments global homologous recombination. The Journal of cell biology, 191(7), 1299–1313. https://doi.org/10.1083/jcb.201005160.
-
Wang, Y., Oxer, D., & Hekimi, S. (2015). Mitochondrial function and lifespan of mice with controlled ubiquinone biosynthesis. Nature communications, 6, 6393. https://doi.org/10.1038/ncomms7393.
-
Lanza, I. R., & Nair, K. S. (2010). Mitochondrial function as a determinant of life span. Pflugers Archiv: European journal of physiology, 459(2), 277–289. https://doi.org/10.1007/s00424-009-0724-5.
-
Amano, H., Chaudhury, A., Rodriguez-Aguayo, C., Lu, L., Akhanov, V., Catic, A., Popov, Y. V., Verdin, E., Johnson, H., Stossi, F., Sinclair, D. A., Nakamaru-Ogiso, E., Lopez-Berestein, G., Chang, J. T., Neilson, J. R., Meeker, A., Finegold, M., Baur, J. A., & Sahin, E. (2019). Telomere Dysfunction Induces Sirtuin Repression that Drives Telomere-Dependent Disease. Cell metabolism, 29(6), 1274–1290.e9. https://doi.org/10.1016/j.cmet.2019.03.001.
-
Sims, C. A., Guan, Y., Mukherjee, S., Singh, K., Botolin, P., Davila, A., Jr, & Baur, J. A. (2018). Nicotinamide mononucleotide preserves mitochondrial function and increases survival in hemorrhagic shock. JCI insight, 3(17), e120182. https://doi.org/10.1172/jci.insight.120182.
-
Fang, E. F., Kassahun, H., Croteau, D. L., Scheibye-Knudsen, M., Marosi, K., Lu, H., Shamanna, R. A., Kalyanasundaram, S., Bollineni, R. C., Wilson, M. A., Iser, W. B., Wollman, B. N., Morevati, M., Li, J., Kerr, J. S., Lu, Q., Waltz, T. B., Tian, J., Sinclair, D. A., Mattson, M. P., … Bohr, V. A. (2016). NAD+ Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair. Cell metabolism, 24(4), 566–581. https://doi.org/10.1016/j.cmet.2016.09.004.
-
Zhang, H., Ryu, D., Wu, Y., Gariani, K., Wang, X., Luan, P., D’Amico, D., Ropelle, E. R., Lutolf, M. P., Aebersold, R., Schoonjans, K., Menzies, K. J., & Auwerx, J. (2016). NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science (New York, N.Y.), 352(6292), 1436–1443. https://doi.org/10.1126/science.aaf2693.
-
Sun, N., Youle, R. J., & Finkel, T. (2016). The Mitochondrial Basis of Aging. Molecular cell, 61(5), 654–666. https://doi.org/10.1016/j.molcel.2016.01.028.
-
Gomes, A. P., Price, N. L., Ling, A. J., Moslehi, J. J., Montgomery, M. K., Rajman, L., White, J. P., Teodoro, J. S., Wrann, C. D., Hubbard, B. P., Mercken, E. M., Palmeira, C. M., de Cabo, R., Rolo, A. P., Turner, N., Bell, E. L., & Sinclair, D. A. (2013). Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell, 155(7), 1624–1638. https://doi.org/10.1016/j.cell.2013.11.037.
-
Das, A., Huang, G. X., Bonkowski, M. S., Longchamp, A., Li, C., Schultz, M. B., Kim, L. J., Osborne, B., Joshi, S., Lu, Y., Treviño-Villarreal, J. H., Kang, M. J., Hung, T. T., Lee, B., Williams, E. O., Igarashi, M., Mitchell, J. R., Wu, L. E., Turner, N., Arany, Z., … Sinclair, D. A. (2018). Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging. Cell, 173(1), 74–89.e20. https://doi.org/10.1016/j.cell.2018.02.008.
-
Mills, K. F., Yoshida, S., Stein, L. R., Grozio, A., Kubota, S., Sasaki, Y., Redpath, P., Migaud, M. E., Apte, R. S., Uchida, K., Yoshino, J., & Imai, S. I. (2016). Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cell metabolism, 24(6), 795–806. https://doi.org/10.1016/j.cmet.2016.09.013.
-
Irie, J., Inagaki, E., Fujita, M., Nakaya, H., Mitsuishi, M., Yamaguchi, S., Yamashita, K., Shigaki, S., Ono, T., Yukioka, H., Okano, H., Nabeshima, Y. I., Imai, S. I., Yasui, M., Tsubota, K., & Itoh, H. (2020). Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocrine journal, 67(2), 153–160. https://doi.org/10.1507/endocrj.EJ19-0313.
-
Okabe, K., Yaku, K., Uchida, Y., Fukamizu, Y., Sato, T., Sakurai, T., Tobe, K., & Nakagawa, T. (2022). Oral Administration of Nicotinamide Mononucleotide Is Safe and Efficiently Increases Blood Nicotinamide Adenine Dinucleotide Levels in Healthy Subjects. Frontiers in nutrition, 9, 868640. https://doi.org/10.3389/fnut.2022.868640.
-
Fang, T., Yang, J., Liu, L., Xiao, H., & Wei, X. (2021). Nicotinamide mononucleotide ameliorates senescence in alveolar epithelial cells. MedComm, 2(2), 279–287. https://doi.org/10.1002/mco2.62.
-
Kiss, T., Nyúl-Tóth, Á., Balasubramanian, P., Tarantini, S., Ahire, C., Yabluchanskiy, A., Csipo, T., Farkas, E., Wren, J. D., Garman, L., Csiszar, A., & Ungvari, Z. (2020). Nicotinamide mononucleotide (NMN) supplementation promotes neurovascular rejuvenation in aged mice: transcriptional footprint of SIRT1 activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic effects. GeroScience, 42(2), 527–546. https://doi.org/10.1007/s11357-020-00165-5.
-
Niu, K. M., Bao, T., Gao, L., Ru, M., Li, Y., Jiang, L., Ye, C., Wang, S., & Wu, X. (2021). The Impacts of Short-Term NMN Supplementation on Serum Metabolism, Fecal Microbiota, and Telomere Length in Pre-Aging Phase. Frontiers in nutrition, 8, 756243. https://doi.org/10.3389/fnut.2021.756243.
-
Nadeeshani, H., Li, J., Ying, T., Zhang, B., & Lu, J. (2021). Nicotinamide mononucleotide (NMN) as an anti-aging health product – Promises and safety concerns. Journal of advanced research, 37, 267–278. https://doi.org/10.1016/j.jare.2021.08.003.
-
Soma, M., & Lalam, S. K. (2022). The role of nicotinamide mononucleotide (NMN) in anti-aging, longevity, and its potential for treating chronic conditions. Molecular biology reports, 49(10), 9737–9748. https://doi.org/10.1007/s11033-022-07459-1.
-
Brito, S., Baek, J. M., Cha, B., Heo, H., Lee, S. H., Lei, L., Jung, S. Y., Lee, S. M., Lee, S. H., Kwak, B. M., Chae, S., Lee, M. G., & Bin, B. H. (2022). Nicotinamide mononucleotide reduces melanin production in aged melanocytes by inhibiting cAMP/Wnt signaling. Journal of dermatological science, 106(3), 159–169. https://doi.org/10.1016/j.jdermsci.2022.05.002.
-
Oblong J. E. (2014). The evolving role of the NAD+/nicotinamide metabolome in skin homeostasis, cellular bioenergetics, and aging. DNA repair, 23, 59–63. https://doi.org/10.1016/j.dnarep.2014.04.005.
-
Zhang, H., Ryu, D., Wu, Y., Gariani, K., Wang, X., Luan, P., D’Amico, D., Ropelle, E. R., Lutolf, M. P., Aebersold, R., Schoonjans, K., Menzies, K. J., & Auwerx, J. (2016). NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science (New York, N.Y.), 352(6292), 1436–1443. https://doi.org/10.1126/science.aaf2693.
-
Long, A. N., Owens, K., Schlappal, A. E., Kristian, T., Fishman, P. S., & Schuh, R. A. (2015). Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC neurology, 15, 19. https://doi.org/10.1186/s12883-015-0272-x.
-
Yao, Z., Yang, W., Gao, Z., & Jia, P. (2017). Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease. Neuroscience letters, 647, 133–140. https://doi.org/10.1016/j.neulet.2017.03.027.
-
Yu, M., Zheng, X., Cheng, F., Shao, B., Zhuge, Q., & Jin, K. (2022). Metformin, Rapamycin, or Nicotinamide Mononucleotide Pretreatment Attenuate Cognitive Impairment After Cerebral Hypoperfusion by Inhibiting Microglial Phagocytosis. Frontiers in neurology, 13, 903565. https://doi.org/10.3389/fneur.2022.903565.
-
Hosseini, L., Farokhi-Sisakht, F., Badalzadeh, R., Khabbaz, A., Mahmoudi, J., & Sadigh-Eteghad, S. (2019). Nicotinamide Mononucleotide and Melatonin Alleviate Aging-induced Cognitive Impairment via Modulation of Mitochondrial Function and Apoptosis in the Prefrontal Cortex and Hippocampus. Neuroscience, 423, 29–37. https://doi.org/10.1016/j.neuroscience.2019.09.037.
-
Liu, X., Dilxat, T., Shi, Q., Qiu, T., & Lin, J. (2022). The combination of nicotinamide mononucleotide and lycopene prevents cognitive impairment and attenuates oxidative damage in D-galactose induced aging models via Keap1-Nrf2 signaling. Gene, 822, 146348. https://doi.org/10.1016/j.gene.2022.146348.
-
Wang, X., Hu, X., Zhang, L., Xu, X., & Sakurai, T. (2020). Nicotinamide mononucleotide administration after sever hypoglycemia improves neuronal survival and cognitive function in rats. Brain research bulletin, 160, 98–106. https://doi.org/10.1016/j.brainresbull.2020.04.022.
-
Chandrasekaran, K., Choi, J., Arvas, M. I., Salimian, M., Singh, S., Xu, S., Gullapalli, R. P., Kristian, T., & Russell, J. W. (2020). Nicotinamide Mononucleotide Administration Prevents Experimental Diabetes-Induced Cognitive Impairment and Loss of Hippocampal Neurons. International journal of molecular sciences, 21(11), 3756. https://doi.org/10.3390/ijms21113756.
-
Kiss, T., Balasubramanian, P., Valcarcel-Ares, M. N., Tarantini, S., Yabluchanskiy, A., Csipo, T., Lipecz, A., Reglodi, D., Zhang, X. A., Bari, F., Farkas, E., Csiszar, A., & Ungvari, Z. (2019). Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment. GeroScience, 41(5), 619–630. https://doi.org/10.1007/s11357-019-00074-2.
-
Wang, X., Hu, X., Yang, Y., Takata, T., & Sakurai, T. (2016). Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain research, 1643, 1–9. https://doi.org/10.1016/j.brainres.2016.04.060.
-
Tarantini, S., Valcarcel-Ares, M. N., Toth, P., Yabluchanskiy, A., Tucsek, Z., Kiss, T., Hertelendy, P., Kinter, M., Ballabh, P., Süle, Z., Farkas, E., Baur, J. A., Sinclair, D. A., Csiszar, A., & Ungvari, Z. (2019). Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox biology, 24, 101192. https://doi.org/10.1016/j.redox.2019.101192.
-
Stein, L. R., & Imai, S. (2014). Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. The EMBO journal, 33(12), 1321–1340. https://doi.org/10.1002/embj.201386917.
-
Zhao, Y., Guan, Y. F., Zhou, X. M., Li, G. Q., Li, Z. Y., Zhou, C. C., Wang, P., & Miao, C. Y. (2015). Regenerative Neurogenesis After Ischemic Stroke Promoted by Nicotinamide Phosphoribosyltransferase-Nicotinamide Adenine Dinucleotide Cascade. Stroke, 46(7), 1966–1974. https://doi.org/10.1161/STROKEAHA.115.009216.
-
Johnson, S., Wozniak, D. F., & Imai, S. (2018). CA1 Nampt knockdown recapitulates hippocampal cognitive phenotypes in old mice which nicotinamide mononucleotide improves. NPJ aging and mechanisms of disease, 4, 10. https://doi.org/10.1038/s41514-018-0029-z.
-
Lu, L., Tang, L., Wei, W., Hong, Y., Chen, H., Ying, W., & Chen, S. (2014). Nicotinamide mononucleotide improves energy activity and survival rate in an in vitro model of Parkinson’s disease. Experimental and therapeutic medicine, 8(3), 943–950. https://doi.org/10.3892/etm.2014.1842.
-
Hsu, C. P., Zhai, P., Yamamoto, T., Maejima, Y., Matsushima, S., Hariharan, N., Shao, D., Takagi, H., Oka, S., & Sadoshima, J. (2010). Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation, 122(21), 2170–2182. https://doi.org/10.1161/CIRCULATIONAHA.110.958033.
-
Yamamoto, T., Byun, J., Zhai, P., Ikeda, Y., Oka, S., & Sadoshima, J. (2014). Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PloS one, 9(6), e98972. https://doi.org/10.1371/journal.pone.0098972.
-
Nadtochiy, S. M., Wang, Y. T., Nehrke, K., Munger, J., & Brookes, P. S. (2018). Cardioprotection by nicotinamide mononucleotide (NMN): Involvement of glycolysis and acidic pH. Journal of molecular and cellular cardiology, 121, 155–162. https://doi.org/10.1016/j.yjmcc.2018.06.007.
-
Park, J. H., Long, A., Owens, K., & Kristian, T. (2016). Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiology of disease, 95, 102–110. https://doi.org/10.1016/j.nbd.2016.07.018.
-
Martin, A. S., Abraham, D. M., Hershberger, K. A., Bhatt, D. P., Mao, L., Cui, H., Liu, J., Liu, X., Muehlbauer, M. J., Grimsrud, P. A., Locasale, J. W., Payne, R. M., & Hirschey, M. D. (2017). Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model. JCI insight, 2(14), e93885. https://doi.org/10.1172/jci.insight.93885.
-
Klimova, N., Fearnow, A., Long, A., & Kristian, T. (2020). NAD+ precursor modulates post-ischemic mitochondrial fragmentation and reactive oxygen species generation via SIRT3 dependent mechanisms. Experimental neurology, 325, 113144. https://doi.org/10.1016/j.expneurol.2019.113144.
-
Zhang, R., Shen, Y., Zhou, L., Sangwung, P., Fujioka, H., Zhang, L., & Liao, X. (2017). Short-term administration of Nicotinamide Mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure. Journal of molecular and cellular cardiology, 112, 64–73. https://doi.org/10.1016/j.yjmcc.2017.09.001.
-
Abdellatif, M., Sedej, S., & Kroemer, G. (2021). NAD+ Metabolism in Cardiac Health, Aging, and Disease. Circulation, 144(22), 1795–1817. https://doi.org/10.1161/CIRCULATIONAHA.121.056589.
-
Abdellatif, M., Trummer-Herbst, V., Koser, F., Durand, S., Adão, R., Vasques-Nóvoa, F., Freundt, J. K., Voglhuber, J., Pricolo, M. R., Kasa, M., Türk, C., Aprahamian, F., Herrero-Galán, E., Hofer, S. J., Pendl, T., Rech, L., Kargl, J., Anto-Michel, N., Ljubojevic-Holzer, S., Schipke, J., … Sedej, S. (2021). Nicotinamide for the treatment of heart failure with preserved ejection fraction. Science translational medicine, 13(580), eabd7064. https://doi.org/10.1126/scitranslmed.abd7064.
-
Wan, Y., He, B., Zhu, D., Wang, L., Huang, R., Zhu, J., Wang, C., & Gao, F. (2021). Nicotinamide mononucleotide attenuates doxorubicin-induced cardiotoxicity by reducing oxidative stress, inflammation and apoptosis in rats. Archives of biochemistry and biophysics, 712, 109050. https://doi.org/10.1016/j.abb.2021.109050.
-
Jafari-Azad, A., Hosseini, L., Rajabi, M., Høilund-Carlsen, P. F., Vafaee, M. S., Feyzizadeh, S., & Badalzadeh, R. (2021). Nicotinamide mononucleotide and melatonin counteract myocardial ischemia-reperfusion injury by activating SIRT3/FOXO1 and reducing apoptosis in aged male rats. Molecular biology reports, 48(4), 3089–3096. https://doi.org/10.1007/s11033-021-06351-8.
-
Wu, K., Li, B., Lin, Q., Xu, W., Zuo, W., Li, J., Liu, N., Tu, T., Zhang, B., Xiao, Y., & Liu, Q. (2021). Nicotinamide mononucleotide attenuates isoproterenol-induced cardiac fibrosis by regulating oxidative stress and Smad3 acetylation. Life sciences, 274, 119299. https://doi.org/10.1016/j.lfs.2021.119299.
-
Yamamoto, T., Byun, J., Zhai, P., Ikeda, Y., Oka, S., & Sadoshima, J. (2014). Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PloS one, 9(6), e98972. https://doi.org/10.1371/journal.pone.0098972.
-
Kiss, T., Giles, C. B., Tarantini, S., Yabluchanskiy, A., Balasubramanian, P., Gautam, T., Csipo, T., Nyúl-Tóth, Á., Lipecz, A., Szabo, C., Farkas, E., Wren, J. D., Csiszar, A., & Ungvari, Z. (2019). Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects. GeroScience, 41(4), 419–439. https://doi.org/10.1007/s11357-019-00095-x.
-
Whitson, J. A., Bitto, A., Zhang, H., Sweetwyne, M. T., Coig, R., Bhayana, S., Shankland, E. G., Wang, L., Bammler, T. K., Mills, K. F., Imai, S. I., Conley, K. E., Marcinek, D. J., & Rabinovitch, P. S. (2020). SS-31 and NMN: Two paths to improve metabolism and function in aged hearts. Aging cell, 19(10), e13213. https://doi.org/10.1111/acel.13213.
-
Wu, L. E., Gomes, A. P., & Sinclair, D. A. (2014). Geroncogenesis: metabolic changes during aging as a driver of tumorigenesis. Cancer cell, 25(1), 12–19. https://doi.org/10.1016/j.ccr.2013.12.005.
-
Lee MK, Cheong HS, Koh Y, Ahn KS, Yoon SS, Shin HD. Genetic Association of PARP15 Polymorphisms with Clinical Outcome of Acute Myeloid Leukemia in a Korean Population. Genet Test Mol Biomarkers. 2016;20:696–701.
-
Dollerup O.L., Christensen B., Svart M., Schmidt M.S., Sulek K., Ringgaard S., Stødkilde-Jørgensen H., Møller N., Brenner C., Treebak J.T., Jessen N. A randomized placebo-controlled clinical trial of nicotinamideriboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am. J. Clin. Nutr. 2018;108:343–353.
-
Martens C.R., Denman B.A., Mazzo M.R., Armstrong M.L., Reisdorph N., McQueen M.B., Chonchol M., Seals D.R. Chronic nicotinamideriboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat. Commun. 2018;9:1286.
-
Yaku K, Okabe K, Hikosaka K, Nakagawa T. NAD Metabolism in Cancer Therapeutics. Front Oncol. 2018;8:622. Published 2018 Dec 12. doi:10.3389/fonc.2018.00622.
-
Available from https://www.biorxiv.org/content/10.1101/2020.03.21.001123v1.
-
Fania, L., Mazzanti, C., Campione, E., Candi, E., Abeni, D., & Dellambra, E. (2019). Role of Nicotinamide in Genomic Stability and Skin Cancer Chemoprevention. International journal of molecular sciences, 20(23), 5946. https://doi.org/10.3390/ijms20235946.
-
Kusumanchi, P., Zhang, Y., Jani, M. B., Jayaram, N. H., Khan, R. A., Tang, Y., Antony, A. C., & Jayaram, H. N. (2013). Nicotinamide mononucleotide adenylyltransferase2 overexpression enhances colorectal cancer cell-kill by Tiazofurin. Cancer gene therapy, 20(7), 403–412. https://doi.org/10.1038/cgt.2013.33.
-
Yoshino, M., Yoshino, J., Kayser, B. D., Patti, G. J., Franczyk, M. P., Mills, K. F., Sindelar, M., Pietka, T., Patterson, B. W., Imai, S. I., & Klein, S. (2021). Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science (New York, N.Y.), 372(6547), 1224–1229. https://doi.org/10.1126/science.abe9985.
-
Camacho-Pereira, J., Tarragó, M. G., Chini, C., Nin, V., Escande, C., Warner, G. M., Puranik, A. S., Schoon, R. A., Reid, J. M., Galina, A., & Chini, E. N. (2016). CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism. Cell metabolism, 23(6), 1127–1139. https://doi.org/10.1016/j.cmet.2016.05.006.
-
Escande, C., Nin, V., Price, N. L., Capellini, V., Gomes, A. P., Barbosa, M. T., O’Neil, L., White, T. A., Sinclair, D. A., & Chini, E. N. (2013). Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes, 62(4), 1084–1093. https://doi.org/10.2337/db12-1139.
-
Yoshino, J., Mills, K. F., Yoon, M. J., & Imai, S. (2011). Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell metabolism, 14(4), 528–536. https://doi.org/10.1016/j.cmet.2011.08.014.
-
Choi, S. E., Fu, T., Seok, S., Kim, D. H., Yu, E., Lee, K. W., Kang, Y., Li, X., Kemper, B., & Kemper, J. K. (2013). Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging cell, 12(6), 1062–1072. https://doi.org/10.1111/acel.12135.
-
Caton, P. W., Kieswich, J., Yaqoob, M. M., Holness, M. J., & Sugden, M. C. (2011). Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function. Diabetologia, 54(12), 3083–3092. https://doi.org/10.1007/s00125-011-2288-0.
-
Bordone, L., Motta, M. C., Picard, F., Robinson, A., Jhala, U. S., Apfeld, J., McDonagh, T., Lemieux, M., McBurney, M., Szilvasi, A., Easlon, E. J., Lin, S. J., & Guarente, L. (2006). Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS biology, 4(2), e31. https://doi.org/10.1371/journal.pbio.0040031.
-
Ramsey, K. M., Mills, K. F., Satoh, A., & Imai, S. (2008). Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging cell, 7(1), 78–88. https://doi.org/10.1111/j.1474-9726.2007.00355.x.
-
Nahle, A., Joseph, Y. D., Pereira, S., Mori, Y., Poon, F., Ghadieh, H. E., Ivovic, A., Desai, T., Ghanem, S. S., Asalla, S., Muturi, H. T., Jentz, E. M., Joseph, J. W., Najjar, S. M., & Giacca, A. (2021). Nicotinamide Mononucleotide Prevents Free Fatty Acid-Induced Reduction in Glucose Tolerance by Decreasing Insulin Clearance. International journal of molecular sciences, 22(24), 13224. https://doi.org/10.3390/ijms222413224.
-
Sheng, F., Ren, X., Dai, X., Xu, X., Dong, M., Pei, Q., Qu, J., Zhou, Z., Zhou, H., & Liu, Z. (2011). Effect of nicotinamide mononucleotide on insulin secretion and gene expressions of PDX-1 and FoxO1 in RIN-m5f cells. Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences, 36(10), 958–963. https://doi.org/10.3969/j.issn.1672-7347.2011.10.005.
-
Polo, V., Saibene, A., & Pontiroli, A. E. (1998). Nicotinamide improves insulin secretion and metabolic control in lean type 2 diabetic patients with secondary failure to sulphonylureas. Acta diabetologica, 35(1), 61–64. https://doi.org/10.1007/s005920050103.
-
Liu, J., Zong, Z., Zhang, W., Chen, Y., Wang, X., Shen, J., Yang, C., Liu, X., & Deng, H. (2021). Nicotinamide Mononucleotide Alleviates LPS-Induced Inflammation and Oxidative Stress via Decreasing COX-2 Expression in Macrophages. Frontiers in molecular biosciences, 8, 702107. https://doi.org/10.3389/fmolb.2021.702107.
-
Ru, M., Wang, W., Zhai, Z., Wang, R., Li, Y., Liang, J., Kothari, D., Niu, K., & Wu, X. (2022). Nicotinamide mononucleotide supplementation protects the intestinal function in aging mice and D-galactose induced senescent cells. Food & function, 13(14), 7507–7519. https://doi.org/10.1039/d2fo00525e.
-
Cros, C., Margier, M., Cannelle, H., Charmetant, J., Hulo, N., Laganier, L., Grozio, A., & Canault, M. (2022). Nicotinamide Mononucleotide Administration Triggers Macrophages Reprogramming and Alleviates Inflammation During Sepsis Induced by Experimental Peritonitis. Frontiers in molecular biosciences, 9, 895028. https://doi.org/10.3389/fmolb.2022.895028.
-
Mateuszuk, Ł., Campagna, R., Kutryb-Zając, B., Kuś, K., Słominska, E. M., Smolenski, R. T., & Chlopicki, S. (2020). Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside. Biochemical pharmacology, 178, 114019. https://doi.org/10.1016/j.bcp.2020.114019.
-
Miao, Y., Li, X., Shi, X., Gao, Q., Chen, J., Wang, R., Fan, Y., & Xiong, B. (2021). Nicotinamide Mononucleotide Restores the Meiotic Competency of Porcine Oocytes Exposed to Ethylene Glycol Butyl Ether. Frontiers in cell and developmental biology, 9, 628580. https://doi.org/10.3389/fcell.2021.628580.
-
Bertoldo, M. J., Listijono, D. R., Ho, W. J., Riepsamen, A. H., Goss, D. M., Richani, D., Jin, X. L., Mahbub, S., Campbell, J. M., Habibalahi, A., Loh, W. N., Youngson, N. A., Maniam, J., Wong, A., Selesniemi, K., Bustamante, S., Li, C., Zhao, Y., Marinova, M. B., Kim, L. J., … Wu, L. E. (2020). NAD+ Repletion Rescues Female Fertility during Reproductive Aging. Cell reports, 30(6), 1670–1681.e7. https://doi.org/10.1016/j.celrep.2020.01.058.
-
Campbell, J. M., Mahbub, S. B., Bertoldo, M. J., Habibalahi, A., Goss, D. M., Ledger, W. L., Gilchrist, R. B., Wu, L. E., & Goldys, E. M. (2022). Multispectral autofluorescence characteristics of reproductive aging in old and young mouse oocytes. Biogerontology, 23(2), 237–249. https://doi.org/10.1007/s10522-022-09957-y.
-
Song, M., Li, Y., Zhou, Y., Yan, J., Zhou, X., Gao, Q., Miao, Y., & Xiong, B. (2022). Nicotinamide mononucleotide supplementation improves the quality of porcine oocytes under heat stress. Journal of animal science and biotechnology, 13(1), 68. https://doi.org/10.1186/s40104-022-00716-0.
-
Miao, Y., Cui, Z., Zhu, X., Gao, Q., & Xiong, B. (2022). Supplementation of nicotinamide mononucleotide improves the quality of postovulatory aged porcine oocytes. Journal of molecular cell biology, 14(4), mjac025. https://doi.org/10.1093/jmcb/mjac025.
-
Yang, L., Lin, X., Tang, H., Fan, Y., Zeng, S., Jia, L., Li, Y., Shi, Y., He, S., Wang, H., Hu, Z., Gong, X., Liang, X., Yang, Y., & Liu, X. (2020). Mitochondrial DNA mutation exacerbates female reproductive aging via impairment of the NADH/NAD+ redox. Aging cell, 19(9), e13206. https://doi.org/10.1111/acel.13206.
-
Ma, D., Hu, L., Wang, J., Luo, M., Liang, A., Lei, X., Liao, B., Li, M., Xie, M., Li, H., Gong, Y., Zi, D., Li, X., Chen, X., & Liao, X. (2022). Nicotinamide mononucleotide improves spermatogenic function in streptozotocin-induced diabetic mice via modulating the glycolysis pathway. Acta biochimica et biophysica Sinica, 10.3724/abbs.2022099. Advance online publication. https://doi.org/10.3724/abbs.2022099.
-
Bai, S., & Sheline, C. T. (2013). NAD(+) maintenance attenuates light induced photoreceptor degeneration. Experimental eye research, 108, 76–83. https://doi.org/10.1016/j.exer.2012.12.007.
-
Lin, J. B., Kubota, S., Ban, N., Yoshida, M., Santeford, A., Sene, A., Nakamura, R., Zapata, N., Kubota, M., Tsubota, K., Yoshino, J., Imai, S. I., & Apte, R. S. (2016). NAMPT-Mediated NAD(+) Biosynthesis Is Essential for Vision In Mice. Cell reports, 17(1), 69–85. https://doi.org/10.1016/j.celrep.2016.08.073.
-
Mimura, T., Kaji, Y., Noma, H., Funatsu, H., & Okamoto, S. (2013). The role of SIRT1 in ocular aging. Experimental eye research, 116, 17–26. https://doi.org/10.1016/j.exer.2013.07.017.
-
Zeng, Y., & Yang, K. (2015). Sirtuin 1 participates in the process of age-related retinal degeneration. Biochemical and biophysical research communications, 468(1-2), 167–172. https://doi.org/10.1016/j.bbrc.2015.10.139.
-
Kowluru, R. A., Santos, J. M., & Zhong, Q. (2014). Sirt1, a negative regulator of matrix metalloproteinase-9 in diabetic retinopathy. Investigative ophthalmology & visual science, 55(9), 5653–5660. https://doi.org/10.1167/iovs.14-14383.
-
Zheng, Z., Chen, H., Li, J., Li, T., Zheng, B., Zheng, Y., Jin, H., He, Y., Gu, Q., & Xu, X. (2012). Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin. Diabetes, 61(1), 217–228. https://doi.org/10.2337/db11-0416.
-
Kubota, S., Kurihara, T., Ebinuma, M., Kubota, M., Yuki, K., Sasaki, M., Noda, K., Ozawa, Y., Oike, Y., Ishida, S., & Tsubota, K. (2010). Resveratrol prevents light-induced retinal degeneration via suppressing activator protein-1 activation. The American journal of pathology, 177(4), 1725–1731. https://doi.org/10.2353/ajpath.2010.100098.
-
Chen, J., Michan, S., Juan, A. M., Hurst, C. G., Hatton, C. J., Pei, D. T., Joyal, J. S., Evans, L. P., Cui, Z., Stahl, A., Sapieha, P., Sinclair, D. A., & Smith, L. E. (2013). Neuronal sirtuin1 mediates retinal vascular regeneration in oxygen-induced ischemic retinopathy. Angiogenesis, 16(4), 985–992. https://doi.org/10.1007/s10456-013-9374-5.
-
Meng, Y. F., Pu, Q., Dai, S. Y., Ma, Q., Li, X., & Zhu, W. (2021). Nicotinamide Mononucleotide Alleviates Hyperosmolarity-Induced IL-17a Secretion and Macrophage Activation in Corneal Epithelial Cells/Macrophage Co-Culture System. Journal of inflammation research, 14, 479–493. https://doi.org/10.2147/JIR.S292764.
-
Pu, Q., Guo, X. X., Hu, J. J., Li, A. L., Li, G. G., & Li, X. Y. (2022). Nicotinamide mononucleotide increases cell viability and restores tight junctions in high-glucose-treated human corneal epithelial cells via the SIRT1/Nrf2/HO-1 pathway. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 147, 112659. https://doi.org/10.1016/j.biopha.2022.112659.
-
Cimaglia, G., Votruba, M., Morgan, J. E., André, H., & Williams, P. A. (2020). Potential Therapeutic Benefit of NAD+ Supplementation for Glaucoma and Age-Related Macular Degeneration. Nutrients, 12(9), 2871. https://doi.org/10.3390/nu12092871.
-
Lee, D., Tomita, Y., Miwa, Y., Shinojima, A., Ban, N., Yamaguchi, S., Nishioka, K., Negishi, K., Yoshino, J., & Kurihara, T. (2022). Nicotinamide Mononucleotide Prevents Retinal Dysfunction in a Mouse Model of Retinal Ischemia/Reperfusion Injury. International journal of molecular sciences, 23(19), 11228. https://doi.org/10.3390/ijms231911228.
-
Chen, X., Amorim, J. A., Moustafa, G. A., Lee, J. J., Yu, Z., Ishihara, K., Iesato, Y., Barbisan, P., Ueta, T., Togka, K. A., Lu, L., Sinclair, D. A., & Vavvas, D. G. (2020). Neuroprotective effects and mechanisms of action of nicotinamide mononucleotide (NMN) in a photoreceptor degenerative model of retinal detachment. Aging, 12(24), 24504–24521. https://doi.org/10.18632/aging.202453.
-
Zhao, C., Li, W., Duan, H., Li, Z., Jia, Y., Zhang, S., Wang, X., Zhou, Q., & Shi, W. (2020). NAD+ precursors protect corneal endothelial cells from UVB-induced apoptosis. American journal of physiology. Cell physiology, 318(4), C796–C805. https://doi.org/10.1152/ajpcell.00445.2019.
-
Li, Y., Ma, X., Li, J., Yang, L., Zhao, X., Qi, X., Zhang, X., Zhou, Q., & Shi, W. (2019). Corneal Denervation Causes Epithelial Apoptosis Through Inhibiting NAD+ Biosynthesis. Investigative ophthalmology & visual science, 60(10), 3538–3546. https://doi.org/10.1167/iovs.19-26909.
-
Koetz, K., Bryl, E., Spickschen, K., O’Fallon, W. M., Goronzy, J. J., & Weyand, C. M. (2000). T cell homeostasis in patients with rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America, 97(16), 9203–9208. https://doi.org/10.1073/pnas.97.16.9203.
-
Fyhrquist, F., Tiitu, A., Saijonmaa, O., Forsblom, C., Groop, P. H., & FinnDiane Study Group (2010). Telomere length and progression of diabetic nephropathy in patients with type 1 diabetes. Journal of internal medicine, 267(3), 278–286. https://doi.org/10.1111/j.1365-2796.2009.02139.x.
-
Testa, R., Olivieri, F., Sirolla, C., Spazzafumo, L., Rippo, M. R., Marra, M., Bonfigli, A. R., Ceriello, A., Antonicelli, R., Franceschi, C., Castellucci, C., Testa, I., & Procopio, A. D. (2011). Leukocyte telomere length is associated with complications of type 2 diabetes mellitus. Diabetic medicine : a journal of the British Diabetic Association, 28(11), 1388–1394. https://doi.org/10.1111/j.1464-5491.2011.03370.x.
-
Takeda, K., & Okumura, K. (2021). Nicotinamide mononucleotide augments the cytotoxic activity of natural killer cells in young and elderly mice. Biomedical research (Tokyo, Japan), 42(5), 173–179. https://doi.org/10.2220/biomedres.42.173.
-
Maiese, K., Chong, Z. Z., Hou, J., & Shang, Y. C. (2009). The vitamin nicotinamide: translating nutrition into clinical care. Molecules (Basel, Switzerland), 14(9), 3446–3485. https://doi.org/10.3390/molecules14093446.
-
Grahnert, A., Grahnert, A., Klein, C., Schilling, E., Wehrhahn, J., & Hauschildt, S. (2011). Review: NAD +: a modulator of immune functions. Innate immunity, 17(2), 212–233. https://doi.org/10.1177/1753425910361989.
-
Omran, H. M., & Almaliki, M. S. (2020). Influence of NAD+ as an ageing-related immunomodulator on COVID 19 infection: A hypothesis. Journal of infection and public health, 13(9), 1196–1201. https://doi.org/10.1016/j.jiph.2020.06.004.
-
Hiromatsu, Y., Yang, D., Miyake, I., Koga, M., Kameo, J., Sato, M., Inoue, Y., & Nonaka, K. (1998). Nicotinamide decreases cytokine-induced activation of orbital fibroblasts from patients with thyroid-associated ophthalmopathy. The Journal of clinical endocrinology and metabolism, 83(1), 121–124. https://doi.org/10.1210/jcem.83.1.4478.
-
Hiromatsu, Y., Sato, M., Tanaka, K., Ishisaka, N., Kamachi, J., & Nonaka, K. (1993). Inhibitory effects of nicotinamide on intercellular adhesion molecule-1 expression on cultured human thyroid cells. Immunology, 80(2), 330–332.
-
Silwal P., Shin K., Choi S., Namgung U., Lee C.Y., Heo J.-Y.-Y. Tryptophan negatively regulates IgE-mediated mast cell activation. Korean J Phys Anthropol. 2017;30:53. doi: 10.11637/kjpa.2017.30.2.53.
-
Imai, S., & Yoshino, J. (2013). The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing. Diabetes, obesity & metabolism, 15 Suppl 3(0 3), 26–33. https://doi.org/10.1111/dom.12171.
-
Rajman, L., Chwalek, K., & Sinclair, D. A. (2018). Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence. Cell metabolism, 27(3), 529–547. https://doi.org/10.1016/j.cmet.2018.02.011.
-
Kim, M., Seol, J., Sato, T., Fukamizu, Y., Sakurai, T., & Okura, T. (2022). Effect of 12-Week Intake of Nicotinamide Mononucleotide on Sleep Quality, Fatigue, and Physical Performance in Older Japanese Adults: A Randomized, Double-Blind Placebo-Controlled Study. Nutrients, 14(4), 755. https://doi.org/10.3390/nu14040755.
-
Liao, B., Zhao, Y., Wang, D., Zhang, X., Hao, X., & Hu, M. (2021). Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: a randomized, double-blind study. Journal of the International Society of Sports Nutrition, 18(1), 54. https://doi.org/10.1186/s12970-021-00442-4.
-
Das, A., Huang, G. X., Bonkowski, M. S., Longchamp, A., Li, C., Schultz, M. B., Kim, L. J., Osborne, B., Joshi, S., Lu, Y., Treviño-Villarreal, J. H., Kang, M. J., Hung, T. T., Lee, B., Williams, E. O., Igarashi, M., Mitchell, J. R., Wu, L. E., Turner, N., Arany, Z., … Sinclair, D. A. (2018). Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging. Cell, 173(1), 74–89.e20. https://doi.org/10.1016/j.cell.2018.02.008.
-
Crisol, B. M., Veiga, C. B., Braga, R. R., Lenhare, L., Baptista, I. L., Gaspar, R. C., Muñoz, V. R., Cordeiro, A. V., da Silva, A., Cintra, D. E., Moura, L. P., Pauli, J. R., & Ropelle, E. R. (2020). NAD+ precursor increases aerobic performance in mice. European journal of nutrition, 59(6), 2427–2437. https://doi.org/10.1007/s00394-019-02089-z.
-
Dehhaghi, M., Panahi, H., Kavyani, B., Heng, B., Tan, V., Braidy, N., & Guillemin, G. J. (2022). The Role of Kynurenine Pathway and NAD+ Metabolism in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Aging and disease, 13(3), 698–711. https://doi.org/10.14336/AD.2021.0824.
-
Kimura, S., Ichikawa, M., Sugawara, S., Katagiri, T., Hirasawa, Y., Ishikawa, T., Matsunaga, W., & Gotoh, A. (2022). Nicotinamide Mononucleotide Is Safely Metabolized and Significantly Reduces Blood Triglyceride Levels in Healthy Individuals. Cureus, 14(9), e28812. https://doi.org/10.7759/cureus.28812.
-
Stromsdorfer, K. L., Yamaguchi, S., Yoon, M. J., Moseley, A. C., Franczyk, M. P., Kelly, S. C., Qi, N., Imai, S., & Yoshino, J. (2016). NAMPT-Mediated NAD(+) Biosynthesis in Adipocytes Regulates Adipose Tissue Function and Multi-organ Insulin Sensitivity in Mice. Cell reports, 16(7), 1851–1860. https://doi.org/10.1016/j.celrep.2016.07.027.
-
Uddin, G. M., Youngson, N. A., Doyle, B. M., Sinclair, D. A., & Morris, M. J. (2017). Nicotinamide mononucleotide (NMN) supplementation ameliorates the impact of maternal obesity in mice: comparison with exercise. Scientific reports, 7(1), 15063. https://doi.org/10.1038/s41598-017-14866-z.
-
Wei, C. C., Kong, Y. Y., Li, G. Q., Guan, Y. F., Wang, P., & Miao, C. Y. (2017). Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway. Scientific reports, 7(1), 717. https://doi.org/10.1038/s41598-017-00851-z.
-
Sims, C. A., Guan, Y., Mukherjee, S., Singh, K., Botolin, P., Davila, A., Jr, & Baur, J. A. (2018). Nicotinamide mononucleotide preserves mitochondrial function and increases survival in hemorrhagic shock. JCI insight, 3(17), e120182. https://doi.org/10.1172/jci.insight.120182.
-
Wei, C. C., Kong, Y. Y., Hua, X., Li, G. Q., Zheng, S. L., Cheng, M. H., Wang, P., & Miao, C. Y. (2017). NAD replenishment with nicotinamide mononucleotide protects blood-brain barrier integrity and attenuates delayed tissue plasminogen activator-induced haemorrhagic transformation after cerebral ischaemia. British journal of pharmacology, 174(21), 3823–3836. https://doi.org/10.1111/bph.13979.
-
Zhang, X. Q., Lu, J. T., Jiang, W. X., Lu, Y. B., Wu, M., Wei, E. Q., Zhang, W. P., & Tang, C. (2015). NAMPT inhibitor and metabolite protect mouse brain from cryoinjury through distinct mechanisms. Neuroscience, 291, 230–240. https://doi.org/10.1016/j.neuroscience.2015.02.007.
-
Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., McBurney, M. W., & Guarente, L. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature, 429(6993), 771–776. https://doi.org/10.1038/nature02583.
-
Rodgers, J. T., Lerin, C., Haas, W., Gygi, S. P., Spiegelman, B. M., & Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434(7029), 113–118. https://doi.org/10.1038/nature03354.
-
Yang, F., Vought, B. W., Satterlee, J. S., Walker, A. K., Jim Sun, Z. Y., Watts, J. L., DeBeaumont, R., Saito, R. M., Hyberts, S. G., Yang, S., Macol, C., Iyer, L., Tjian, R., van den Heuvel, S., Hart, A. C., Wagner, G., & Näär, A. M. (2006). An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature, 442(7103), 700–704. https://doi.org/10.1038/nature04942.
-
Assiri, M. A., Ali, H. R., Marentette, J. O., Yun, Y., Liu, J., Hirschey, M. D., Saba, L. M., Harris, P. S., & Fritz, K. S. (2019). Investigating RNA expression profiles altered by nicotinamide mononucleotide therapy in a chronic model of alcoholic liver disease. Human genomics, 13(1), 65. https://doi.org/10.1186/s40246-019-0251-1.
-
Guarino M, Dufour JF. Nicotinamide and NAFLD: Is There Nothing New Under the Sun?. Metabolites. 2019;9(9):180. Published 2019 Sep 10. https://doi:10.3390/metabo9090180.
-
Wang S, Wan T, Ye M, et al. Nicotinamideriboside attenuates alcohol induced liver injuries via activation of SirT1/PGC-1α/mitochondrial biosynthesis pathway. Redox Biol. 2018;17:89-98. https://doi:10.1016/j.redox.2018.04.006.
-
Zong, Z., Liu, J., Wang, N., Yang, C., Wang, Q., Zhang, W., Chen, Y., Liu, X., & Deng, H. (2021). Nicotinamide mononucleotide inhibits hepatic stellate cell activation to prevent liver fibrosis via promoting PGE2 degradation. Free radical biology & medicine, 162, 571–581. https://doi.org/10.1016/j.freeradbiomed.2020.11.014.
-
Luo, C., Ding, W., Yang, C., Zhang, W., Liu, X., & Deng, H. (2022). Nicotinamide Mononucleotide Administration Restores Redox Homeostasis via the Sirt3-Nrf2 Axis and Protects Aged Mice from Oxidative Stress-Induced Liver Injury. Journal of proteome research, 21(7), 1759–1770. https://doi.org/10.1021/acs.jproteome.2c00167.
-
Guan, Y., Wang, S. R., Huang, X. Z., Xie, Q. H., Xu, Y. Y., Shang, D., & Hao, C. M. (2017). Nicotinamide Mononucleotide, an NAD+ Precursor, Rescues Age-Associated Susceptibility to AKI in a Sirtuin 1-Dependent Manner. Journal of the American Society of Nephrology : JASN, 28(8), 2337–2352. https://doi.org/10.1681/ASN.2016040385.
-
Jia, Y., Kang, X., Tan, L., Ren, Y., Qu, L., Tang, J., Liu, G., Wang, S., Xiong, Z., & Yang, L. (2021). Nicotinamide Mononucleotide Attenuates Renal Interstitial Fibrosis After AKI by Suppressing Tubular DNA Damage and Senescence. Frontiers in physiology, 12, 649547. https://doi.org/10.3389/fphys.2021.649547.
-
Hasegawa, K., Sakamaki, Y., Tamaki, M., & Wakino, S. (2022). Nicotinamide mononucleotide ameliorates adriamycin-induced renal damage by epigenetically suppressing the NMN/NAD consumers mediated by Twist2. Scientific reports, 12(1), 13712. https://doi.org/10.1038/s41598-022-18147-2.
-
Yasuda, I., Hasegawa, K., Sakamaki, Y., Muraoka, H., Kawaguchi, T., Kusahana, E., Ono, T., Kanda, T., Tokuyama, H., Wakino, S., & Itoh, H. (2021). Pre-emptive Short-term Nicotinamide Mononucleotide Treatment in a Mouse Model of Diabetic Nephropathy. Journal of the American Society of Nephrology : JASN, 32(6), 1355–1370. https://doi.org/10.1681/ASN.2020081188.
-
Chen, Y., Liang, Y., Hu, T., Wei, R., Cai, C., Wang, P., Wang, L., Qiao, W., & Feng, L. (2017). Endogenous Nampt upregulation is associated with diabetic nephropathy inflammatory-fibrosis through the NF-κB p65 and Sirt1 pathway; NMN alleviates diabetic nephropathy inflammatory-fibrosis by inhibiting endogenous Nampt. Experimental and therapeutic medicine, 14(5), 4181–4193. https://doi.org/10.3892/etm.2017.5098.